In the past 100 years, Albert Einstein’s assertion that there’s an ultimate speed limit – the speed of light – is widely accept and withstood countless tests. But recently some argue that that is not absolutely right. Postdoc Michael Hohensee and graduate student Nathan Leefer from University of California, Berkeley again cheched whether some particles break this law.
The team’s first attempt to test this fundamental tenet of the special theory of relativity demonstrated once again that Einstein was right, but Leefer and Hohensee are improving the experiment to push the theory’s limits even farther – and perhaps turn up a discrepancy that could help physicists fix holes in today’s main theories of the universe.
The team’s first attempt to test this fundamental tenet of the special theory of relativity demonstrated once again that Einstein was right, but Leefer and Hohensee are improving the experiment to push the theory’s limits even farther – and perhaps turn up a discrepancy that could help physicists fix holes in today’s main theories of the universe.
Hohensee, Leefer and Dmitry Budker, a UC Berkeley professor of physics, conducted the test using a new technique involving two isotopes of the element dysprosium. By measuring the energy required to change the velocity of electrons as they jumped from one atomic orbital to another while Earth rotated over a 12-hour period, they determined that the maximum speed of an electron – in theory, the speed of light, about 300 million meters per second – is the same in all directions to within 17 nanometers per second. Their measurements were 10 times more precise than previous attempts to measure the maximum speed of electrons.
The UC Berkeley physicists and colleagues at the University of New South Wales in Sydney, Australia, who provided crucial theoretical calculations, published their results this week in the journal Physical Review Letters.
No comments:
Post a Comment